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SUMMARY

An Invosti~t~ on was conducted to determlno the inherent flow
characters tics of tie engine-atuge supercharger or 18-cylinder
double-row radial aircraft ong+ne. The supercharger inlet elbow
was Tlow-tested to delxmmine the veloc.ty profile of the air at
the Impeller Inlet for cezburetw-thro ttle angles of 66°, 50°, and
40° from full closed. The 66° throttle angle is the -Imum flow
setting i’orthe carburetor ueed In “Lhetests. The complete super-
charger aesembl.ywas eet up and khe flow distribution in the
13 outlek was detmml ned. Tests were run at v=iot~ speede,
volume ?lows, outlet pre3sures, and caz-lmretor-throttlo angles to
Investigate tho effect of each on the flow distribution.

Cona~derable variation was found in tho a~r flow in the
1!3outlets of the supercharger. The didribution varied, for the
useful range of supercharger operation, from 40 percent above
average to 60 percent below average. me basjc distribution
pattern was not appreciably altered by a C- in the Impeller
tip sl>eed,the outlet reference pressure, the volume flow, or the
carburetor-throttleangle. The distribution spread tended to
docroase as the volume flow decreased but the basic pattern was
maintained. Because the dlacharge co~itione d’ the test rig
differed frcm those In an engine installation, the nonuniform
distribution observed In the present tests wI1l be very much less
in actual.operatim, but the bend wll.1be slmjlar.
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IRTROIUCTION

As ~ of an Investlgatlon requested by the Air Technical
Serviae Coman d, Amny Alr Foroes,.to Improve the mixture distrlbu-
tIon of a double-row radial engine, an ertenslve test program Ie
being conducted at the NACA Cleveland laboratory to detezmine the
air-flow charaoterlstics of this engine.

The results of an”investigation of the performance W an
18-cylinder double-row radial aircraft engine (reference 1) show a
large variation In oylinder-head temperatures. The hottest cylin-
der,.which determines the cooling-air pressure drop aL.dthe degree
of fuel enrichment reQuired for operation within specifications,
limits the engine performance end fuel economy. The variation In
cylinder-head temperatures may be attributed to an uneven distri-
bution d the fuel and the charge air to the individual cylinders
and to unequal cooling-air dlstrlbutlon.

The tests reported herein, conduoted during the early part af
1945, were made to detezzuinethe inherent charge-air distribution
ch=aoteristlcs of the engine-atnge supercharger a? the double-row
radial engine. %elimlnary to tinepresent tests the supezwharger
Inlet-elbow and c=buretor aasembly waa fluw-tested to determine
the velooity distribution of the air at the outlet of the super-
charger inlet elbow for various carburetor-throttle angles. The
complete supercharger assemiblywas set up with 18 uniform outlet
pipes exhausting into a collector and the flow charaoterlstlcs of
this assembly were determined. Tests were made to determine how
the distribution in the 18 outlets of the supercharger was affected
by the impeller tip speed, the volume flow, the outlet pressure, and
the distortion of the velocity profile at the impeller inlet. Can-
plete superohsrger data were obtained for all tests in order to
100ate the useful operating range of the supercharger.

APF’ARATUSAN DTESTS

For the flow tests the supercharger Inlet elbow with a conven-
tional ln~ectlon-type hydrcmetering carburetor.was set up In a
duet-component test rig which Is shown schematically in figure 1.
Standard pitot-static tubes were used to make velocity surveys
across the elbow outlet (station 1) at traverses A, B, and C. The
tests were made for carburetor-throttle angles of 66°, 50°, and
40° fra full closed. The 66° throttle-angle position is the msxi-
mum flow setting for this carburetor.
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Fcm the distmibution studies the ccsnpleteengine-stage super-
charger and accessory drive unlts with the carburetxm were set up
fcr @sting as--shownin figure 2. “The-supercharger, driven,.by.a
llqwtd cooled aircraft engine, exhaust into a large s-trlcal
collectcm through 18 unlfcwm outlet pipes. The supercharger rig
was not lagged because the mmin objective cf these tests wae to
obtiin distrlbution data ~-atherthan supercharger efficiency. In
order to elimlnate ~ effect 01 the collector on the flow dis-
tribution in the 18 outlet pipes, a baffle was placed In the col-
lector, dual collector outlets were used, and ““thecollectar wae
made as large as sp9ce limitations permitted. An Inlet and an
outlet throttle were used to control the air flcw through the euper-
charger and to regulate the reference mutlet ~emure measured at
the en@ne-mnif old-pressure fitting on the rear supercharger-
housing COVSr .

The instrumentation at the supercharger test rig conformed to
the speclfIcatims of reference 2. The we:@t flow of air through
the supercharger was determlnod by measuring the static-pressure
drop across a thin-pJ~te orifice with an NACA micromnometer. The
Inlet-air static pressuxe, to’talprowurc, and temperature were
measured upstream of the carburetor upper deck at a distance tulce
the narrow dimmsion & the inlet duct, which is a straight rectan@ar
section 12 times the narrow d“imenslonin length.

The inlet-air static pressure, the total pressure, and the tem-
perature in each outlet pipe were measured at a station located
15 diameters downstream of the bond ~n the pipe and 6 dhmoters up-
stavxunof the colloctor. The point at which the total-preseure and the
total-temperatum moamrments were taken was one-third the distance
across the Inside diameter of the pipe.

TJIorder to determine If a possible nonuniformity of outlet
pipes imaluenced the observed flow distribution, pipes 5 and 14,
which exhlbftod tho maximum and the mlnlmum flows, respectively,
were interchanged. The collector was then rotated 40° with respect
to the supercharger outlet pipes to obsorve the Influence of the
collector outlets on the dlstrlbution pattern. A distortion p~te
was placed between the carburetor and the supercharger Inlet-elbow
mating flangee to study the effect on the flow distribution of a
3&ge distortion of the velocity profile at the impeller inlet. ThIe
plate blocked off half the inlet area at the inside of the bend.
Tests were -de to determine the effect of impeller tip speed, outlet
proseure, volume flow, distortion at impeller ?nlet, outlet-pipe uni-
fcmml~, and collector-outletlocatl~n on the air distribution in
the 18 outlets of the supercharger. The variables for the tests are
listed in the followlng table:
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Engine t3&ed-

(m)

1600-2800
(In incre-
ments of 200)

2200
2000
2400
2000
2000
2000
2000
2000
2400
2400
2400
2400
2400
2000

2000
2000
2400

2400

—.
Refererme out- Cszburetor-
let premure

..O-=LI%L

(in. Hg above

NAcA m No.

6

6
6
6
6
6
6
6
6
6
6
6
6
6

Wide-open out-
let t~ottle

3
10

Wide-omen out-
let throttle

3

66

66
66
66
55
50
45
40
66
55
50
45
40
66
66

66
66
66

66
2400 i 10 I 66— —.

Pest-rig
mria-
;iom

~
None

A
A,B.
A,B
A,B
A,B
A,B
A,B
A)B,C
A,B
A,B
A,B
A,B
A,B,C
A,B

A,B
A,B
A,B

A,B
A,B

E5H28

.

%est-rig variations are as follows:
A Outlet ptpee 5 and 14 interc-hanged.
B Collector rotated 40”.
C DistortIon plate added.

The test procedure recommended in reference 2 was followed
exoept for obt~lnlrg the values of outlet pressure. Complete su~r-
churger data were obtained fcr all tests In order to 100ate the use-
ful opc.rat~ rcnra of tho su~mohar~r.

CALCULATIONS

Inasmuoh as low velocities existed in the outlet pipes, these
velocities were computed frmm the dynsmlc pressure for inmmpres-
Slble flow. The mass-flow distribution in the 18 outlet pipes was
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computed from the product of the velocity and the density In eaoh
outlet pipe cm tbe assumption that the veloolty profiles In eaoh
pipe were synmetrloal and similar; the error introduced.by this .
assumption is negligible beoause there were 15 diameters of straight
pi~ before the meaeur~ station and the flow was turbulent for

.

all tests.

The use of a oonstant value of load ooefflolent * for oom-
pering the results of these tests Is unsatlsfaotory beoause a oon-
stant value of Q/n at the lnbt nmasurlng station upstream of
the carburetor does not give a cionstantvalue of Q/n at the
Impeller inlet. The design of the test rig prohibits the instal-
lation of Instruments for determining the volume rate of fluw at
the Inpoller ifiet @ a flow funotlon determined by outlet oondl-
tions must Conseqmntly be used to obtain comparable flow oonditlons

within tha superoherger unit. Tbe flow factors Q2# d Q2Jq
where

Q volume flow, cubic feet per

n Impeller speed, revolutions

T absolute temperature, ‘F

subecrlpts

2 outlet

t total

are eatlsfactory cm a basle for compexlson; Q2/n is u measure of

‘b ‘eomotw ‘f ‘l-ow- Q%/J%
is a measure of the Mach number.

At co~stant jmpeller tip speeds the effect of both funotlons IS the
same and either may be used. Thu derivation of Q2L/,f12~ Is shown
in the appendix.

The results

mwmsm mscmsmi

of air-flow distribution for

-q, -,

all tests are presented
as nondlmensimal plots of M/~v a@nst outlet-pipe number, where

M Ie thG nws flc-wfor any one Flpe aad WV Is the computed av~ram

mass flow for om pipe. The outlot-pipe number corresponds to the
engine oyllndor. Dats are preoentod In only the useful operating
range of the su~roharger.

.-. —— .. -—
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Effect of ~eller tflpspeed& - The effeot of Impeller tip—.—. —
s~~ed oan be completely isolated only by holding constant either
the gecmetry of flow or the Mach number at eve~ point in the system,
which may be done by using the flow function Q/n to study the

geometry of flow effect and the flow function Q/.. to study the
Mao& number effect. The geometry of flow or the Mach number can be
held constant at only one point in the system; at all other points
these factors will vary with changes in speed. I!ecausethe instru-
mentation of the test rig limits the stations at which the flow
fu~tions can be determined, the outlet station was used. The flow
functions at this point reflect the gecmetry of flow and the Maoh
number at the outlet pipes. In eit,hercase the reszlting variation
from the baslo pattern is not solely a speed effect but a sumation
oi’speed effects and the effeots represented by the fluw function
that Is veried.

Figure 3 is plotted for constant values of Q2t~ nnd figurs 4

tl
for constant values of Q2 ~i~. A complete range of speeds Is not

shown in all plots because of the impossibility of obtaining suffi-
ciently high flows at the low speeds. P~or air-flow d~strlbutlon
existed at all s~eds and flows; either outlet pipe 1 or 5 had the
highest mass flow and outlet pipe 14 the lowest maes flow. The maxi-
mum deviations from the computed aver- mase flow ranged from
40 percent above to 60 pexcent beluw average. For both flow parameters
the basic distribution pattern -S maintained at all speeds ti maSS
flowe. For the curves based on Q2t/n little scatter occurred at

any point other than outlet pipe 13 where the deviation from the com-
puted average Increased with speed. Considerably more scatter
occurred in the plots using Q2t/& as a peramter than those

using Q@. This difference i-nthe amount of scatter indicates
that the geometry of flow h~ mom influence on the air-flow distri-
bution than the Mach number. The hrpeller speed seemed to have no
decided effect on the basio distribution pattern.

Effect of outlet pressure. - The effect of cutlet pressure cn
the air-flow distribution in the suparctiger outlets Is presented
in figure 5 for tide-c~n outlet throttle ti for reference outlet
pressures of 3, 6, and 10 inches of mercury above atmospheric, The
reference outlet pressure at wide-open outlet throttle ranged from
1.c5 inches of mercury above to 0.28 inch of mercury below atmospheric
pressure. These runs were made at engine speeds of 2400 and 2000 rpm
with carburetor throttles at 66°. Compulson of the distribution
obtained at the dlffennt values of nfe~nce outlet pressure indl-
cat,est~t the -it~e of the boost h~ no appreciable effect on
the air-flow distribution.
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Effeot of volume flow. - The effeot
distribution Is sh=in figure 6.
obtained from rune at 2000And 2400

7

of volum flow on the alr-
The test data presented
w, a c=b=tor-throttle

s~ttlng of 66°, and a referenoe outlet pre&&e of 6 i~hes of mr-
oury above atmospheric. The values of ‘Q2~fi for the flows

used were approximately 2.7, 1.9, and 1.5 at 2400 rp and 2.5, 1.8,
and 1.3 at 2000 rpm. Although the trend is not refleoted at eU
Indlvldual outlet pipes, a reduction In volume flow tends to mlnl-
mlze the magnitude of the deviation from the avemge mass flow
without appreciably alterlng the basio distribution pattern. This
effeot Is to be expected beoause the renditions oontrlbuting to
distortion beoome more crltioal with the high velocities that aoca-
WJV increases In volume flow. At high volume flows beyond the
normal operating range of the su~roharger, a tendency toward back-
flow wae noted In outlet pipe 6.

Effect of distortion at impeller inlet. - The results of the—— -
flow tests of the superchuggr Inlet glbow are presented In figure 7
as plots of V/Vav aga~~t l/L where V/Vav IS the ratio of the
local velocjty at a point to tb c~uted avera~ veloclty and 2/L
Is the ratio of the distance of the particular pcint from the inside
wall of the bend to the total length of traversu of the survey.
There was a change in velocity profile with a change In carburetor-
throttle angle but the baBlc profile was not appreolably altered.

The effect of carburetor-throttleangle on the supercharger alr-
flcw dlstrlbutlon in the outlet pipes is ehown In f~gure 8. Any
variation In c~bmetor-throttle ~le and the subsequent distortion
of the velocity profile at the i~ell~r inlet had no apparent effect
on the air-flow distribution pattern. Tho allght scatter in data at
10W V&hleS Of Q2t

r
T2t may be partly attributed to the difficulty

of obtalnlng precise measurements at low flows.

A compxrlson of stiil~ tests, ~th and without the dlstortlcn
Pkte (fig. 9)D shows that the velooity profile of the air at the
@eller Inlet has a slight effeot on the air-flow distribution of
the superokger. The ch~e in veloolty profile with o-o in
throttle angle through tho operating range, however, is not of suf-
ficient magnitude to appreciably affect Ijb air-flow distribution.

Effect of outlet-pipe uniformity and collector-outlet location. -
The results of the teets to oheck the uniformity of the outlet Pipes
by InterohanglngpIpas 5 and 14 (fig. 10) show that any effect of
outlet-pipe nonunifozmlityon tk air-flow distribution obtained ~S
negligible.

.

. . ... .—. -



The lnvesti~tion of the effect of collector-outlet locatlon
(fig. 11) shtia that the distribution pattezm was not appreciably
altered by rotating the collector outlets and therefore the design
of the collector did not Influenoe the distribution pattern obtained.

Duplication of results. - Figure 12 is a comparison of the——— .
results for two approximately equal values of flow function to
demonstrate the degree of accuraoy with which data for the same
test condlthns could be reproduced. Al&bough excellent agreement
of data is shown for most of the outlet pipes, there was some
var~ation in pipes 3, 11, and 13 as a result of a small fluctuation
of the flow in these yjpes. In no case was the variation In die-
trlbution sufflcdent to influence the results obtained.

Superchar~r perfknmance. - TIM adiabatlo efi’~ciency qti and

the pressure coefficient ~—were obtained for a carburetor-throttle
setting of 66° and Impeller tip upeeda VT corresponding to engine
speeds of 1600, 1800J 2000, 2200, 2400, 2600, and 2800 rpm. These

datn me preeented In figure 13 as plots against. Q2t~/T>~”. The

superchokger perfmmnce was taken L%om the inlet meuauring station
upetreom of the caburetor to the measuring stations in the outlet
pipes. Because the test rig was not lagged, the adiabatic effi-
ciencies tend to be high. The inclusion of tho carburetor preseure
drop in the pressure ratio of the supercharger, however, would tend
to counteract the Increase In efficiency due to heat transfer and
would, in all cases, reduce the preesuro coefficients. Absolute
values of the efficiency wero not considered important inasmuch as
the alr-distribution data were the principal ob:ectlvu of these
tests; the supercharger data aro Inoluded only to show the range of
operation for which the ajr-distributiondata are presented.

Tao variation
may be interpreted

GENERAL COMMENTS

In mass I’1owin the outlets of the superchexgsr
as an ~ndication of the pressuro distribution

around the collector of the supercharger. Because the flow in each
outlet plpo was lntemittent dur?~ actual engine operation, the
nonwdfom dietriblxtlonof chsrge air for an en@ne-supercharger
combination will not be so great as those tests Indiomte. The air-
flow distribution mcy be expected to folluw the same trend witL the
highest flow In either outlot 1 or 5 and the lowest flow in outlet 14.

Tho asynmetry of the air-flow distribution at the outlets is the
result of a summation of the asymmetry of flow paths throughout the
supercharger system. The tests of the inlet elbow showed a low-
velocity area behind the impeller-shuftbearing support that was not
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appreolably altered by changes In carburetor-throttleangle. Inaa-
muoh as poor flow oondltions existed at the Impeller inlet, It is .
logioal”to assume thd the flow at the Impeller outlet-would be
distorted. The diffuser had 13 vanes whioh caused an unsymetrloal
location of vanes with respeot to the 18 outlets and an uneven
yressure dietrlbutIon around the oolleotor. This distortional
efl’eatof the diffuser may even further amplify the uneven flow
distribution preeent at the diffuser Inlets.

Throughout this investigationv~latlons In Im@ler speed,
volum flow, oe,rburetor-throttleangle, and outlet pressure did not
appreciably alter the basic distribution pattern. The slight vari-
ations from the basic patten, produced by the distortion plate,
indicated the significance of impeller-inlet conditions on air-flow
distribution in the outlets. !l!bedistribution pattern obtained was
not caused by Inlet or diffuser ccndltlons alone but by a summtlon
of both effeots. The air-flow distribution could probably be
improved by a s~etrioal ~~~nt of dfffuser vanes and super-
charger outlets and by lmpro~ing the velocity profile at the Impeller
ink)t by rudeslgning

From tests made

the iKd.Btelbow.

SUIWIRY 0FKE8ULTS

to determine the flow distribution in the 18 out-
lets of the engine-st- supercharger C& an l@-cylinder double-row
radial aircraft engine, the following results were obtained:

1. Poor air-flow difirlbution -s observed In the outlets of
the engine-stnge supercharger during all tests. Outlets 1 and S
received the highest maSS flow and Outlet 14 the lowest. The maxi-
mum dev~ations from the computed average mass flow encountered for
the Meful r-e of su~rch~~r o~ratlon v~ied from 40 percent
above averege to 60 percent below averege. The nonunlfom dlstrl-
butlon under conditions of aotual e@~ operation, however, W-
not be so meat a8 these tests Indloatod.

2. A variation in Impeller tip speed for the normal engine
operating rcmgg ~ R ~gliglble effect on the basic air-flow dis-
tribution pattern.

3. A variation in outlet pressure &cm approximately O to
10 lnohes of merc~y above atios~ric p~SSU had a negligible
effect on the basic air-flow distribution pattcm’n.

.

4. A deonase in vol~ fl~ caused a dec~aso in the magnitude
of the deviati~ of t~ air-fl~ distr:butjon from the aver- hut
the basic distribution pattern was maintained.

—
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carburetor-throttle anKle for the nomal oper-
a negligible effect on tti-basic air-flow dls%-
A pzwnounoed distortion of the velocity profile
Inlet, however, had a slight effeot on the distrl-

Reseemh Laboratory,
Natlo& Advisory Committee fir Aeronautics,

Cleveland, Ohio, August 28, 1945.
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When the supercharger load

11

/
THE FLOW R’UNC!J!IONQ2t ~

coeffIaient Qlm/n and the speed

Iratios are given, the flow functim Q1~ ~–& be determined by.

where

s 8p9d ratio, r8ti0 of impeller
supercharger Inlet

tip Epeed to eonlc veloolty at

7 ratio of sp9clfic heats for normal air (c~ct =

R ratio of absolute to gmvitational unit of masej

R gas constant for normal air, ft-lb/lb/cF (53.50)

1.3947)

lb/slug (32.174)

D Impeller diemeter, ft

and the subscripts

s stat!c

1 inlet

If the perfomsnce of a eupercherger is uniquely determined
by the variables Q1~ n and S,

/
it 1s therefore uniquely detemined

Jby the variables Q1 ~ - S.

In order to avoid the effect of changes In
actual volume flow, It is convenient to use the

with the fictitious volume flow Ql+, whl;h iS

flow exea on the
total temperature

‘%
the quotient of the

mass flow and the total.density. Me factor Qlt/#~ Is related to
..—

Qla/JTl*by

(1)
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where A iS area In

of the superohar~r

Bquare feet.

Q2JJq- “&

~ ~~ NO. E5H28

The flow funotion at the outlet

also be used with S fcr Om.u-

pa21son of suyeroharger—’firformanoe.This rektlon may be expressed

where P is the preasum In pounds per square foot.

Then

Q1
B=—

n

/ /
Inasmuch as P2t P% and T2t T% are functions of Q1 n and S,

J al

Q2t/. is CLlso a function of Qla n and S. If the perfozmnnco
/

of a given superoW@r Is a unique funotion of Q1-in and S, it

Is therefore also

Tho value of
the equation

/
a unique funotion of Q2t ~~ ~ S.

this flow function Q2
I

t ~~ Is determined from

(3)

where W Is the weight flow in pounds per second.
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Inside of

i I A
B

Reference station Section A-A

I

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

Figure 1. - Schematic diagram of engine-s~age supercharger inlet elbow of double-row radial engine.
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Irtlet-airthrottle
Orifice tank
Discharge throttle
Inlet-air measuring station
Collector baffle
Drive unit

Carburetor
Supercharger assembly

Collector
Discharge-measuring station

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS

(a) Test rig.

Figure 2. - Double-row radial engine-stage supercharger test setup.
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(b) Close-up view of test unit.

Figure 2. - Concluded.
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Engine speed
(rpm)

QZfin

+ 1800 0.2648
x 2000 .2559
n 2200 .2617
0 2400 .2587
A 2600 .2522
b 2800 .2519

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS

.6 “

.4 --

.2

.0 \ t~

.8

.6

Q2t/flt

I.980
2.102
2.345
2.499
2.600
2.753

‘\--M

.4

Outlet piDe

(a) Q2t/n, approximately 0.26.

Figure 3. - Effect of engine speed on air-flow distribution in outlets of engine-stage supercharger

of double-row radial engine on the basis of approximately constant values of Q2t/n; reference

outlet pressure, 6 incnes of mercury above atmospheric; carburetor-throttle angle, 66°.
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.6

Engine speed
(rpm)

o 1600
+ I800
x 2000”
❑ 2200
0 24oO
A 2600
~ 2800

0.2255 1.513
.2330 I .740
.2332 1.915
.2385 2.136
.2328 2.247
.2342 2.348
.2234 2.441

A\ , 1 1 I 1 I / r/

2F-
.6

●4

.2j23 4 56 7 8 9 10 II IZ 13 i4 i5

Outlet pipe

(b) Q2t/n, approximately 0.23.

Figure 3, - Continued,
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1.6

1.4

1.2

1.0

.8

.6

.4

Outlet pipe

(c) Q2t/nJ approximately 0.20.
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